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Abstract

This paper explores dwell time constraints on switched systems with mul-
tiple, possibly disparate invariant limit sets. We show that, under suitable
conditions, trajectories globally converge to a superset of the limit sets and
then remain in a second, larger superset. We show the effectiveness of the
dwell-time conditions by using examples of switching limit cycles commonly
found in robotic locomotion and flapping flight.
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control

1. Introduction

Bifurcations have been of interest to dynamical systems theory for decades.
However, most control strategies view such behavior as damaging and try to
mitigate it [1]. Relatively less work actively inserts bifurcations as part of a
control strategy. One example is using a classic Hopf bifurcation for mode-
switching between flapping and gliding flight in micro-aerial vehicles [2].
The authors consider a supercritical Andronov-Hopf bifurcation model of
x = (u; v):

ẋ = f(x, t; ρ) =

(
−λ/ρ2 (u2 + v2 − ρ2σ)u− ω(t)v
ω(t)u− λ/ρ2 (u2 + v2 − ρ2σ) v

)
(1)
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Subsystem 1: Steady 
Walking Mode

Subsystem 2: Fast/Slow 
Jumping/Hopping Mode

Subsystem 3: Fine Motor 
Control Mode

Figure 1: Schematic of mode switching with non-equilibrium limit sets.

with σ = 1. For a positive rate of convergence λ > 0, it can be easily shown
that any initial trajectory (u; v) 6= 0 exponentially converges to a circle
of the radius ρ rotating at the time-varying frequency ω(t) with bounded
ω̇(t). If σ ≤ 0, bifurcation occurs and the system globally converges to the
origin, which is useful for fast inhibition of oscillation. Fast inhibition and
synchronization of oscillators are key properties for many neurobiologically-
inspired control schemes.

Another possible application is walking robots. Fig. 1 shows a hypotheti-
cal switching pattern for a walking robot application utilizing central pattern
generation. A guidance/navigation engineer may design limit cycle subsys-
tems for walking and jumping modes (shown as a Hopf oscillator and a Van
der Pol oscillator), while utilizing steady-state control strategies for static
balancing or tasks requiring fine motor control.

Mode-switching also implicates a large body of literature on switched
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systems [3]. Most work on stability of switched systems assumes that all
subsystems have a common equilibrium point. [4, 5, 6] consider weak Lya-
punov functions in the style of LaSalle for a common equilibrium. [7] consid-
ers equilibrium location changes, but holds the vector field constant. They
connect the result to averaging theory. [8] considers practical stability of
affine systems with multiple distinct equilibria. Alpcan and Başar investi-
gated dwell time criteria for nonlinear globally exponentially stable subsys-
tems which could have differing equilibria [9]. Such systems have no single
globally attractive equilibrium point. The authors of [9] reported an explicit
construction of the dwell time and a conservative invariant set. This paper
is inspired by that work and is a generalization of it. We generalize their
result to switched systems where each subsystem may have multiple invari-
ant sets. We pursue a similar dwell time strategy in order to provide spatial
bounds for the switched system. The resulting construction is slightly more
complicated, as we consider V̇ in order to isolate the invariant sets rather
than using the Lyapunov function alone.

Systems with bifurcation often contain multiple ω-limit sets which cannot
be globally exponentially stable. Instead, results such as LaSalle’s invariant
set theorem [10] allow us to analyze asymptotic stability of this larger class
of systems. LaSalle’s theorem and much of the switched systems literature
are both Lyapunov-based, and we will make use of Lyapunov functions to
define all the relevant sets. The benefit to relying on Lyapunov functions is
that this requires no special structure on the subsystems’ entire vector fields.
The tradeoff is that we fail to exploit any special structure the subsystems
may possess and the result relies on being able to find suitable Lyapunov
functions.

Section 2 provides background assumptions and definitions. Section 3
begins by reconsidering existing results. Sections 3.3 through 3.5 present two
methods to accomplish the goal. Choice of a particular method will depend
on specific situations and design constraints. Section 4 shows a numerical
example, and Section 5 provides closing comments.

2. Preliminaries and Definitions

Consider a set of continuous-time dynamical systems defined by

ẋ = fp (x) , (2)
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where x ∈ Rn and p ∈ P , with some index set P = {p1, p2, ..., pmax}. A
piecewise constant switching signal σ : [0,∞) → P specifies the active sub-
system at each time. Assume, for ease of analysis, that fp are each continuous
with continuous first partials. Together, (2), the index set, and the switching
signal define a switched system.

Only some systems admit stability results for arbitrary switching signals,
so we will consider a constraint on how quickly the switching signal can make
consecutive switches.

Definition Consider a switched system with switching times {t1, t2, ...}. It
is said to have dwell time τ if ti+1 − ti ≥ τ ∀i ∈ N.

Next, we review and introduce some important subsets of Rn. We have
not yet provided strict assumptions on Lyapunov-like functions. At present,
it is enough to assume that each subsystem has a (possibly different) C1

Lyapunov-like function, which is bounded above and below on every bounded
subset of Rn. Furthermore, assume that each is radially unbounded (Vp(x)→
∞ as ‖x‖ → ∞). This ensures that every sublevel set describes a compact
region. We assume for the remainder of this paper that the minimum value
of each Vp is zero. Define

Gp = {x ∈ Rn|Vp(x) = 0} (3)

as the set which attains the minimum value of Vp. Let κ be a positive constant
and define

Np (κ) = {x ∈ Rn|Vp (x) ≤ κ} , (4)

a closed κ-neighborhood of Gp. For the purposes of Theorem 1, Np (κ) is
connected, but it is not necessarily connected in the remainder of the paper
(See Figure 4). Let the union over P be

N (κ) =
⋃
p∈P

Np(κ). (5)

Additionally, we define a superset, M(κ), in a series of steps with

αp (κ) = max
x∈N (κ)

Vp (x) , (6)

and
Mp (κ) = {x ∈ Rn : Vp (x) ≤ αp (κ)} . (7)
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V1
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Figure 2: Qualitative example of how N andM are built for a switched system consisting
of two subsystems, each with a single equilibrium, but at different locations.

Finally, we create a closed union of closed sublevel sets,

M (κ) =
⋃
p∈P

Mp. (8)

Notice that the dependence on κ carries through once we use it in N (κ). For
the purposes of Theorem 1, M is a connected superset of N . Theorem 4
will introduce a different notion which is not necessarily connected. Figure 2
provides a one-dimensional example to help visualize these sets.

3. Stability Results

We first restructure the result in [9] slightly to add clarity and to better
facilitate the generalization presented in this paper.

3.1. Unique Equilibrium Case

Theorem 1 ([9]). Consider a family of systems defined by (2), each with a
single, globally exponentially stable equilibrium, denoted x∗p. Suppose that the
exponential decay rate of each Lyapunov function, as described in

V̇p(x) ≤ −εVp(x), ∀x ∈ Rn,∀p ∈ P , (9)

is at least ε > 0.
Furthermore, given a positive constant κ, define the sets as in Section 2

and assume µ(κ) ∈ (1,∞) such that
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Vr (x)

Vq (x)
≤ µ(κ),∀q, r ∈ P ∀x ∈ Rn \ N (κ) . (10)

Then, for every switching signal with dwell time

τ >
log µ(κ)

ε
, (11)

(i) There exists a time T such that x(T−) ∈ Nσ(T−) (κ), and

(ii) For any time t̄ such that x(t̄) ∈ Nσ(t̄) (κ), x(t) ∈M (κ) for all t ≥ t̄.

Remark 1. Not all choices of Vp will give a finite value of µ(κ). Typical
polynomial constructions for Lyapunov functions must have the same poly-
nomial order. Scaling or stretching Lyapunov functions may be useful, but
there will be implications for both the spatial parameter µ and the temporal
parameter ε. We will will revisit the idea of scaling briefly in Sections 3.3-3.4.

Proof. We will only provide a sketch of the relevant features. The proof
proceeds in two parts:

(i) Consider a finite time interval [t0, T ] with corresponding switching times
t1 < t2 < · · · < tnσ , where nσ is the number of switches inside the
interval. Between switches, σ(t) is constant. If the trajectory enters
Nσ(t) (not just N ), the result is trivial. Otherwise, the behavior of
Vσ(t)(x(t)) between switches satisfies (9). Denote the limit from the
right/left as superscript +/−, respectively. Then,

Vσ(t−i+1)(x(t−i+1)) ≤ e−ε(ti+1−ti)Vσ(t+i )(x(t+i )). (12)

At switches,

Vσ(t+i )(x(t+i )) ≤ µ(κ)Vσ(t−i )(x(t−i )) (13)

holds. We can iterate on i to obtain

Vσ(T−)(x(T−) ≤ e((log µ(κ)/τ)−ε)(T−t0)Vσ(t0)(x(t0)). (14)

Importantly, under the dwell time condition, (11), this implies that by
taking T suitably large, we can make Vσ(T−)(x(T−)) arbitrarily small.
Thus, x(T−) ∈ Nσ(T−) (κ). This proof is existential, not constructive.
We cannot calculate a particular time T for any particular problem.
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(ii) The second part of the proof shows that after a switch at time ti, the
dwell time is sufficiently large to force the trajectory back into Nσ(t) (κ)
before a subsequent switch at time ti+1. Furthermore, the trajectory
cannot escape M (κ) in that interval.

Details are available in [9]. The proof presented above is different from [9]
in one important way - we specify that the trajectory enters Nσ(t) (κ) rather
than N (κ). In fact, it is an error to do the latter. The trajectory may
pass through N (κ) \ Nσ(t) (κ) and then switch after it has emerged, which
may cause it to exit M (κ). There is nothing special about N (κ) \ Nσ(t) (κ)
while σ(t) remains constant. It may be aesthetically displeasing to have the
entry set change in time along with σ(t), but we must do this, because the
time-independent formulation is false. We will demonstrate with an example.

Example This example is a slight variation of Example 2 from [9]. Choose

ẋp = Axp + bp, (15)

but with

A =

[
−1 −10
10 −1

]
(16)

b1 =

[
10
1

]
, b2 =

[
−1
10

]
, b3 =

[
1
−10

]
.

We are able to use the same Lyapunov functions, V1(x) := x2
1 + (x2− 1)2,

V2(x) := (x1 + 1)2 + x2
2, and V3(x) := (x1 − 1)2 + x2

2. One can check that
τ can be the same as in [9], but that is not important here. Consider the
trajectory shown in Figure 3. The red circles show N (κ); the black circles
showM (κ). Subsystem 1 is active at the start, and the trajectory is shown

in blue. N1 (κ) is the red circle centered around
[

0 1
]T

. The trajectory

passes through N3 (κ), which is the red circle centered around
[

1 0
]T

.
This is entering N (κ), but not Nσ(t) (κ). Now, notice that we could have
selected initial conditions to make the entry into N3 (κ) occur at arbitrarily
large time. This allows us to place a switch anywhere along the trajectory,
regardless of τ (this is a “free switch” that we will see again in Section 3.5).
In this case, we switched to subsystem 2 at the location where the trajectory
changes to green. It exits M (κ) shortly thereafter.
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Figure 3: Example trajectory demonstrating the need for time-dependent Nσ(t) (κ).

3.2. Problem Statement: Switching Systems having Multiple Invariant Sets

Alpcan and Başar considered subsystems, each having a globally expo-
nentially stable equilibrium point [9]. We will relax this condition to allow
for systems with multiple invariant sets. Consider a switched system with
C1 functions Vp : Rn → R bounded on every bounded subset of Rn such that

V̇p(x) ≤ 0, ∀x ∈ Rn, (17)

and Vp(x)→∞ as ‖x‖ → ∞. Denote

Ep =
{

x ∈ Rn|V̇ (x) = 0
}
. (18)

Our problem is as follows. Is there a dwell time condition that suffices for
ultimate boundedness?

Two challenges are immediately apparent. First, if V̇ vanishes outside
of Np (κ), there is not a strictly positive Lyapunov decay rate outside of
Np (κ), so it is unclear how long to wait between switches. Second, even in
the absence of switching, the active system may never enter Np (κ) (Ep may
not be contained in Np (κ); see Figure 4). The following three subsections
describe two methods for overcoming these challenges.
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3.3. Intermediate Solution: Expand Entry Neighborhood

The simplest idea is to realize that Np (κ) grows in size as we increase
κ. Assuming that Ep is bounded, we can pick κ large enough so that
Ep ⊂ Np (κ). Even so, not all Lyapunov functions satisfying (17) will decay
exponentially on Rn \Np (κ). For example, consider a single one-dimensional
subsystem ẋ = − arctan(x) with V = x2. Nevertheless, the following lemma
is useful:

Lemma 2. Consider a switched system with Lyapunov functions Vp satisfy-
ing V̇p ≤ 0 with Vp(x)→∞ as ‖x‖ → ∞ and Ep bounded. Then, for sublevel
Lyapunov sets Np(κ) such that Ep ⊂ Int(Np(κ)) (where Int denotes the in-
terior) and any ε ∈ R, there exists a different set of continuous, radially
unbounded Lyapunov functions Vp such that,

1. Vp(x) = 0 for x ∈ Np, and Vp(x) > 0 for x ∈ Rn \ Np.
2. Vp(x(t+ t0)) ≤ e−εtVp(x(t0)) for all x ∈ Rn \ Np and t, t0 ∈ R.

Proof. Bhatia [11] constructed a unique continuous function s(x) on Rn \Np
such that s(x(t+ t0)) = s(x(t0))− t and s(x)→ 0 as x→ Np. Then, we can
select any constant ε and set

Vp(x) =

{
0 for x ∈ Np
eεs(x) for x ∈ Rn \ Np.

(19)

Hence, on Rn \ Np,

Vp(x(t+ t0)) = eεs(x(t+t0)) = eε(s(x(t0))−t) = e−εtVp(x(t0)). (20)

This means that for suitably large κ, there exist Vp that decay exponen-
tially outsideNp (κ). A simple constant shift can patch the original Lyapunov
function on Np (κ) with the construction of Lemma 2 outside Np (κ) at ∂Np
(the boundary of Np), and the mere continuity of Vp outside of Np does not
harm any essential parts of the proof. (Note that performing a constant shift
outside Np (κ) will scale ε by αp, but we could just perform the construction
again with a larger ε to correct for this). However, relying on the construc-
tion of Lemma 2 may not allow for (10) to hold, and we must assume that
we can find a set of Lyapunov functions which satisfy both the exponential
decay property and the µ property, (10). It is left as an open problem to
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determine if it is generally possible to construct a set of Lyapunov functions
that satisfy both conditions for any switched system.

Now, the conditions required for Theorem 1 hold (noting that is is not
essential to have exponential Lyapunov decay within Np).

Remark 2. It is useful to notice that our set definitions do not require a
single value of κ for all subsystems. If our subsystems have qualitatively dif-
ferent invariant sets, it may be very damaging to require a single κ. Instead,
we can choose a set, κ = {κp}, of values and restate all our set definitions as
functions of κ.

Making κp very large is problematic in two ways. First, the purpose of
defining a large neighborhood is to neglect the troubling areas (by this, we
mean that we do not know much about the trajectory insideN (κ)). However,
with large κp, we may be cutting out substantial portions of our state space.
Secondly, it may lead to larger dwell time or larger M(κ). In the next two
subsections, we describe a method to more tightly tailor our strategy.

3.4. First Main Result: Tightly Tailored Entry Set

Since the troubling regions are just those where V̇p ≤ 0 is closest to
zero, we will now define a smaller set containing these regions. Choose a set
δ = {δp1 , δp2 , ..., δpmax} with δpi > 0, and define the set

Hp (δp) =
{

x ∈ Rn : V̇p (x) > −δp
}
, (21)

so that Ep ⊂ Hp. As usual, we can also define H (δ) =
⋃
p∈P
Hp. Figure 4

provides a one-dimensional example to help visualize how these sets are con-
structed. Similar to before, not all Vp satisfying (17) decay exponentially
outside Hp (δp). Define

γp (δp) = max
x∈Hp

Vp(x). (22)

Furthermore, set

Lp (δp) = {x ∈ Rn : Vp (x) ≤ γp (δp)} . (23)

Since Lp is a sublevel Lyapunov set, it is compact. From compactness, V̇p
attains a minimum on Lp, while Vp attains a finite maximum. Thus, on Lp \
Hp, an exponential decay rate can be computed, while we can use Lemma 2

10



p

κp

Gp

Ep

Hp

Np

Figure 4: Qualitative example of tighter tailoring. The subsystem has two stable equilibria
and a single unstable equilibrium. Notice that Np ⊂ Hp.

outside Lp. Again, if necessary, a simple constant shift can patch the two
functions together at ∂Lp.

While the construction in Lemma 2 only gives s(x) continuous in the
multi-dimensional sense, it is clearly directionally differentiable along the
subsystem trajectories. Thus, writing V̇ is sound notation. Putting it all
together, we can compute ε such that

V̇p (x) ≤ −εVp (x) ,∀x ∈ Rn \ Hp (δp) ,∀p ∈ P . (24)

Unfortunately, Hp may be disconnected, and it is not necessarily invariant
even in the absence of switching. We will engage these problems directly in
Sec. 3.5, but for now, we can proceed directly to a simple theorem demon-
strating the usefulness of embedding N inside H.

Theorem 3. Consider a family of systems defined by (2), each with a ra-
dially unbounded Lyapunov-like function that satisfies (17). Assume Hp, Ep
bounded and Gp ⊂ Hp(δ). Compute ε(δ) so that (24) is satisfied and assume

Vr (x)

Vq (x)
≤ µ(δ), ∀q, r ∈ P , ∀x ∈ Rn \ H (δ) (25)

holds for finite µ(δ). Furthermore, compute κp > 0 such that Gp ⊂ Np(κ) ⊆
Hp(δ). Then, for every switching signal with dwell time τ > log µ(δ)

ε
, there

exists a time T such that x(T−) ∈ Hσ(T−) (δ).

11



Proof. Notice that all of the necessary assumptions are valid on Rn\Hσ(t)(δ).
By taking suitably large T , we can make Vσ(T−)(x(T−)) arbitrarily small.
Therefore, either x(T−) ∈ Nσ(T−)(κ) ⊆ Hσ(T−) (δ) or the trajectory enters
Hσ(t) (δ) somewhere else before that time.

Remark 3. In [9], κ was a single tuning parameter. In Section 3.3, κ = {κp}
was introduced as a possible set of tuning parameters. Now, per Theorem 3,
the set of tuning parameters is δ = {δp}, and κ is computed as a consequence
of our selection of δ. Since nearly every parameter/set which follows is de-
pendent on δ, we will often omit explicit dependence in favor of readability.

3.5. Second Main Result: No-Escape Set

This section assumes the trajectory has entered Hσ(t)(δ) at some time
and proceeds to build the relevant no-escape set, which will be denotedMp.

The primary problem is that Hp is not necessarily an invariant set even
for periods of time when σ(t) constant is constant (i.e., no switching). For
example, a subsystem may contain a locally unstable equilibrium. With δp
small, H is certainly not an invariant set. One way this can be problematic
is that we can get a free extra switch.

Example Consider two one-dimensional subsystems, ẋ1 = −x1 and ẋ2 =
x2 − x3

2, with V2 = (x − 1)2(x + 1)2 and small δ2. Assume a nonzero initial
condition with the first subsystem being active. The trajectory can become
arbitrarily close to zero before switching to the second subsystem. While the
second subsystem is active (σ(t) is constant), the trajectory can clearly leave
H2. Furthermore, since the second subsystem started arbitrarily close to the
origin, it can take an arbitrarily long time to exit H2. Thus, no finite dwell
time can prevent at least one switch from being possible outside of H.

There are two ways to compute a dwell time and an associated spa-
tial bound, but we need a few more definitions first. Set the usual γ(δ) =
max
p∈P

γp(δp) and L (δ) =
⋃
p∈P
Lp. Compute

ξp (δ) = max
x∈L(δ)

Vp (x) , (26)

and set ξ(δ) = max
p∈P

ξp(δ).
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Theorem 4. Consider a family of systems defined by (2), each with a ra-
dially unbounded Lyapunov-like function that satisfies (17). Assume Hp, Ep
bounded and Gp ⊂ Hp(δ). Compute ε(δ) so that (24) holds and assume

Vr (x)

Vq (x)
≤ µ(δ), ∀q, r ∈ P ∀x ∈ Rn \ H (δ) (27)

holds for finite µ(δ). Furthermore, compute κp > 0 such that Gp ⊂ Np(κ) ⊆
Hp(δ). Set κ = min

p∈P
κp. Then, for every switching signal with dwell time

τ >
log ξ(δ)

κ

ε
, (28)

for every t̄ such that x ∈ Hσ(t̄), x(t) ∈M (δ) =
⋃
p∈P
Mp for all t ≥ t̄, where

Mp (δ) = {x ∈ Rn : Vp (x) ≤ ξp} . (29)

Proof. Consider the following sequence of times. Assume a switch occurs or
the system is started at t0. Assume further that there is a time t0 ≤ tenter

at which the trajectory enters Hσ(t+0 )(δ). There may or may not be a time

at which the trajectory exits Hσ(t+0 )(δ), which we will denote tenter ≤ texit. If
there is, texit− tenter could possibly be arbitrarily large. Therefore, the second
switching time t1 may be shortly after texit while the trajectory is outside of
Hσ(t+0 )(δ) regardless of the dwell time.

The proof will proceed in two parts. First, we will show that the trajectory
does not leave M before a third switching time, called t2. Then, we will
compute a dwell time so that the trajectory must re-enter Hσ(t) before t2.
By induction, the trajectory will never leave M.

(i) We will show that the trajectory never leaves M on [tenter, t1], then
on [t1, t2]. Since x(tenter) ∈ Hσ(t0) ⊂ Mσ(t0) and Mσ(t0) is a sublevel
Lyapunov set, the trajectory cannot leave Mσ(t0) on [tenter, t1] since no
switching occurs on this interval. Next, notice

x(t1) ∈ Lσ(t−1 ) ⊂ L ⊂Mσ(t+1 ). (30)

Thus, the trajectory cannot leave Mσ(t+1 ) on [t1, t2].

(ii) We will show that the trajectory must re-enter Hσ(t) before t2. Define
∆ = t2 − t1 ≥ τ , giving

Vσ(t−2 )(x(t−2 )) ≤ e−ε∆Vσ(t+1 )(x(t+1 )) ≤ e−ε∆ξσ(t+1 ) ≤ e−ε∆ξ. (31)

13



The dwell time given by (28) gives that Vσ(t−2 )(x)(t−2 ) ≤ κ. Thus, the
trajectory enters Nσ(t+1 ) or reenters Hσ(t) elsewhere before time t2.

Corollary 5. Taken together, Theorems 3 and 4 provide a dwell time which
guarantees finite time entry into Hσ(t) and the invariance of M thereafter.
Given a particular problem, if we want to apply both theorems, we should set

τ >
log max(µ, ξκ)

ε
.

Section 4 will show examples that have ξ
κ
> µ, but it is trivial to construct

cases with very large µ. Next, we construct some lower bounds for µ which
are helpful for determining that the bounds in these theorems are tighter
than some other possible bounds. Define

ηp (δ) = max
x∈H

Vp(x), (32)

and the following proposition will be useful.

Proposition 6. Given the preceding set definitions, µγ ≥ ξp ≥ ηp ∀p.

Proof. Since Hp ⊂ Lp, H ⊂ L, and ξp ≥ ηp.
Without loss of generality, consider x ∈ L such that V1(x) = ξ1. There

are three cases:

Case 1. Suppose x ∈ H1. Then, ξ1 = γ1. Since γ ≥ γ1 and µ ≥ 1, µγ ≥ ξ1.

Case 2. Suppose x ∈ H \ H1. Then, ξ1 = η1. Since ξ1 is a maximum of V1

over L ⊃ H and H is open, V1(x) must be a local maximum. But, if it is a
local maximum, ∇V1(x) = 0 and V̇1(x) = 0. Thus, x ∈ H1, and the problem
is reduced to Case 1.

Case 3. Suppose x ∈ L \ H. Then, (27) holds, and

µ ≥ V1(x)

Vp(x)
∀p. (33)

Then, for some p, µγ ≥ µγp ≥ µVp(x) ≥ V1(x) = η1 = ξ1.
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Notice that in the ideal case, with each subsystem consisting only of a
single exponentially stable equilibrium, γ = κ, Lp = Hp = Np, and ξ = α can

be attained. In the case they are attained, τ =
log max(µ, ξκ)

ε
=

log max(µ, ξγ )
ε

=
log µ
ε

, (29) collapses to (7), and we can consider this a true generalization of
the result in [9]. In fact, one can notice that both examples in [9] satisfy the
equality µκ = ξ.

Remark 4. Using similar techniques as those in Theorem 4, one can find
a bound for τ and M that looks like min(max(µγ, ηp), ξp). This expression
reduces to ξp given Proposition 6.

Remark 5. We chose to define the dwell time as a constant across all subsys-
tems, but allowed the spatial calculation to proceed with regard to individual
subsystems. This is consistent with the idea that applications will utilize a
single, subsystem invariant, dwell time. Since only the final union matters
for the no-escape set, it is of no importance that the individual pieces were
built with different constants determining sublevel sets.

4. Examples

We provide two numerical examples to illustrate the main results of the
paper. In particular, we want to demonstrate that tight tailoring can provide
better results than expanding the entry neighborhood.

4.1. One-Dimensional Example

Consider a family of systems defined by

f1(x) = −x(x− 1)2, f2(x) = −(x− 1). (34)

Select V1(x) = x2 and V2(x) = (x − 1)2 and δ = [0.05; 0.1]. Then,
H1 = [−0.139, 0.197] ∪ [0.803, 1.139], H2 = [0.776, 1.224], µ = 67.28, and
ε = 1.29. We can set κ = [0.0193; 0.050], giving N1 = [−0.139, 0.139] ⊂ H1

and N2 = [0.776, 1.224] ⊂ H2. Then, we can compute γ = [1.297; 0.050],
L1 = [−1.139, 1.139], L2 = [0.776, 1.224], and ξ = [1.497; 4.575]. Finally, this
results in τ = 4.240 and M = [−1.224, 3.139]. The size of M is 4.362.

We compare the large-κ method with two metrics. First, we select κ
so that τ is the same as the tight-tailoring method (we make the methods
temporally-equivalent) and compare the size of M. Second, we select κ so
that the size of M is the same as the tight-tailoring method (we make the
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Figure 5: The sets E (black) and H (red) for each subsystem.

methods spatially-equivalent) and compare the required dwell time. In order
to make τ = 4.240, we must set κ = [2.271; 0.257]. This results in µ = 8.837,
ε = 0.514, and M = [−1.507, 3.507], which has size 5.014. For the second
case, we can make M = [−1.181, 3.181] by setting κ = [1.395; 0.0328]. The
result is that µ = 42.48, ε = 0.0657, and τ = 57.08. In each case, tight
tailoring shows better performance.

4.2. Two-Dimensional Limit Cycle Example

Consider a family of systems defined by

f1

(
x
y

)
=

[
− (x2 + y2 − 1) −1

1 − (x2 + y2 − 1)

](
x
y

)

f2

(
x
y

)
=

[
− (x2 + y2 + 1) −1

1 − (x2 + y2 + 1)

](
x
y

)
(35)

f3

(
x
y

)
=

[
−1 −1
1 −1

](
x
y

)
+

(
2
−2

)
.

This is a simplified version of (1), a central pattern generator used for control
of swimming [12] or flying robots [2]. Subsystem 1 has an unstable equilib-
rium at the origin and a stable limit cycle of unit radius centered around the
origin. Subsystem 2 has a stable equilibrium at the origin. Subsystem 3 has a

stable equilibrium at
[

2 0
]T

. Take the corresponding Lyapunov functions
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Figure 6: The sets G (black) and N (blue) for each subsystem. The example is suitably
well-behaved so that E = G and H = N except for the unstable origin and its surrounding
neighborhood when p = 1.

to be V1(x) = (x2 +y2−1)2, V2(x) = (x2 +y2)2, and V3(x) = ((x−2)2 +y2)2,
respectively. If we choose δ = [0.2, 0.1, 0.1], then ε = 0.22, µ = 2215,
κ = [0.042, 0.022, 0.025], γ = [1.0, 0.22, 0.25], ξ = [23, 33, 136], and τ = 38.9.
Figures 5, 6, and 7 show the resulting sets. In fact, many of the result-
ing parameters (chief among them dwell time and size ofM) are determined
through nontrivial relations. Optimization and tradeoffs between spatial per-
formance and temporal performance is problem-specific.

5. Conclusion

We derived a stability result for switched systems which are constructed
from subsystems which possibly contain multiple invariant sets. This amounted
to a generalization and refinement of the argument presented in [9] and is
in the spirit of dwell time methods for switched systems. This result can be
applied to a larger class of dynamical systems than those in [9], including
those which contain bifurcations. We provide a set of tuning parameters, δ,
which cause interrelated and problem-specific effects on performance.

Future studies could be focused on determining an explicit relation be-
tween tuning parameters and performance for a subclass of systems in or-
der to better facilitate optimization or investigating a continuous family of
switched systems near a bifurcation point.
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Figure 7: The sets Ep (black), L (red), andM (blue). The skinny black line is an example
trajectory.
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